In vivo measurement of D2 receptor density and affinity for 18F-(3-N-methyl)benperidol in the rat striatum with a PET system for small laboratory animals.

نویسندگان

  • Susanne Nikolaus
  • Rolf Larisch
  • Markus Beu
  • Karl Hamacher
  • Farhad Forutan
  • Henning Vosberg
  • Hans-Wilhelm Müller
چکیده

UNLABELLED A recent investigation showed that intracerebral radioactivity concentrations can reliably be quantified in vivo with a small-animal PET device. The purpose of the current study was to investigate the binding characteristics of the D(2) receptor radioligand (18)F-(3-N-methyl)benperidol ((18)FMB) in rat striatum by determining receptor density (B(max)) and affinity (K(d)) in vivo. For validation, K(d) and B(max) additionally were determined in vitro using storage phosphor autoradiography. METHODS Striatal radioactivity was measured with PET in 8 Sprague-Dawley rats after injection of (18)FMB in increasing specific activities. Free radioligand concentrations were estimated from cortical radioactivity concentrations and were subtracted from striatal radioactivity concentrations to obtain specific binding. In vitro saturation experiments were performed on 7 further rats according to the isotopic dilution method. Specific binding was determined by both subtraction of (18)FMB binding in the presence of raclopride and subtraction of cortical radioactivity concentrations from total radioligand binding. Saturation binding curves were obtained by plotting specifically bound radioligand concentrations against free radioligand concentrations and were evaluated with regression analysis. RESULTS PET yielded a K(d) of 6.2 nmol/L and a B(max) of 16 fmol/mg for the striatal D(2) receptor. In vitro, K(d) and B(max) amounted to 4.4 nmol/L and 84.1 fmol/mg (subtraction of (18)FMB binding in the presence of raclopride), respectively, and 7.9 nmol/L and 70.1 fmol/mg (subtraction of cortical radioactivity concentrations), respectively. CONCLUSION K(d) values measured with PET and autoradiography agreed and corresponded to inhibition constants obtained in previous in vitro studies. B(max) values lay within the same order of magnitude. The results of in vitro saturation binding analyses also agreed, irrespective of the mode of determination of free radioligand concentrations. Thus, B(max) and K(d) may be determined with PET in analogy to the evaluation of in vitro binding data by regression analysis of bound-versus-free ligand concentrations. Our results show that small-animal tomographs are valuable tools for the in vivo characterization of receptor radioligands as an alternative to autoradiography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo labeling of the dopamine D2 receptor with N-11C-methyl-benperidol.

A new dopamine D2 receptor radiotracer, N-11C-methyl-benperidol (11C-NMB), was prepared and its in vivo biologic behavior in mice and a baboon was studied. Carbon-11-NMB was determined to bind to specific sites characterized as dopamine D2 receptors. The binding was saturable, reversible, and stereospecific. Kinetic studies in the dopamine D2 receptor-rich striatum showed that 11C-NMB was retai...

متن کامل

Quantification of D2 Receptor Binding in the Rat Striatum Using Small Animal PET – The Impact of the Reference Tissue on the Binding

In the present study, the binding potential (BP) of the D2 receptor radioligand [ 18 F]N-methyl-benperidol ([ 18 F]FMB) was determined with in vivo saturation binding analysis using either cerebellum or parietal cortex as reference region. For the purpose of validation, BP additionally was determined in the same set of animals by computing the equilibrium ratios of the distribution volumes (V3’...

متن کامل

Imaging of striatal dopamine D(2) receptors with a PET system for small laboratory animals in comparison with storage phosphor autoradiography: a validation study with (18)F-(N-methyl)benperidol.

UNLABELLED Several groups have developed high-resolution PET systems and shown the feasibility of in vivo studies on small laboratory animals. In this investigation, one of these systems was validated for the performance of receptor imaging studies. For this, the radiotracer concentrations obtained in the same animals with PET and with autoradiography were quantified, and the correspondence bet...

متن کامل

Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging With 18F- Fluciclovine: A Comparison Study With L-Methyl-11C-Methionine PET Imaging

Objective(s): 18F-fluciclovine (trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid, [FACBC]) is an artificial amino acid radiotracer used for positron emission tomography (PET) studies, which is metabolically stable in vivo and has a long half-life. It has already been shown that FACBC-PET is useful for glioma imaging. However, there have been no reports evaluating the efficiency of FACBC-P...

متن کامل

Search for PET probes for imaging the globus pallidus studied with rat brain ex vivo autoradiography.

We have evaluated the feasibility of using four positron emission tomography (PET) tracers for imaging the globus pallidus by ex vivo autoradiography in rats. The tracers investigated were [11C]KF18446, [11C]SCH 23390 and [11C]raclopride for mapping adenosine A2A, dopamine D1 and dopamine D2 receptors, respectively, and [18F]FDG. The highest uptake by the globus pallidus was found for [11C]SCH ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2003